
October 20th 2020 — Quantstamp Verified

Prysm

This security audit was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Ethereum 2.0 client

Auditors Kacper Bąk, Senior Research Engineer
Alex Murashkin, Senior Software Engineer
Ed Zulkoski, Senior Security Engineer
Jan Gorzny, Blockchain Researcher
Leonardo Passos, Senior Research Engineer
Poming Lee, Research Engineer
Martin Derka, Senior Research Engineer
Sung-Shine Lee, Research Engineer
Sebastian Banescu, Senior Research Engineer
Kevin Feng, Software Engineer

Timeline 2020-04-29 through 2020-10-13

Languages Go

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification Prysm Codebase Overview
GoDoc
Phase 0 for Humans
Phase 0 accompanying resource
Ethereum 2.0 Terms Demystified

Documentation Quality High

Test Quality Medium

Source Code
Repository Commit

prysm 7bea237

Goals Is the implementation vulnerable to DoS
attacks?

•

Does the implementation deviate from the
specification?

•

Does the implementation leak any sensitive
data?

•

Total Issues 58 (43 Resolved)

High Risk Issues 4 (3 Resolved)

Medium Risk Issues 12 (9 Resolved)

Low Risk Issues 20 (14 Resolved)

Informational Risk Issues 17 (13 Resolved)

Undetermined Risk Issues 5 (4 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://godoc.org/github.com/prysmaticlabs/prysm
https://notes.ethereum.org/jDcuUp3-T8CeFTv0YpAsHw?view
https://notes.ethereum.org/@djrtwo/ByHlx-j6V?type=view
https://medium.com/alethio/ethereum-2-0-terms-demystified-8398357429d7
https://github.com/prysmaticlabs/prysm
https://github.com/prysmaticlabs/prysm/commit/7bea2373975e8c3714a8e943ff0dba83ca3b0a07

Summary of Findings

Quantstamp has reviewed the whole codebase of the Prysm ETH 2.0 client implementation. We have found a number of issues spanning all severity levels. Some of the high severity issues
were resolved before completion of the review. Overall the code is well-written. There are many ways, however, in which it can be improved to follow best practices. For example, code
clones are relatively common. Furthermore, despite being mostly self-documenting, inline code documentation is lacking. We have no doubt that it would be useful for future contributors.
Despite being accompanied by the official ETH 2.0 documentation, the implementation is very nuanced and complex. The code does not always follow the specification (or it is not clear
that it does). We found a number of issues that span both the specification and the implementation. Although we aggregated some of them in the "Adherence to Specification" section,
they are of utmost importance and we highly recommend addressing each and every of them as if they were actual vulnerabilities.
Finally, many pieces of the code lack unit tests, and hence, relatively low coverage. We highly recommend adding meaningful unit tests and improving the coverage to maximize code
quality.

the team addressed almost all of the findings. Mapping between issues and solutions is present in .Update: PR#6327

ID Description Severity Status

QSP-1 The functions ,
and

may return
union instead of intersection

IntersectionUint64()
IntersectionInt64()
IntersectionByteSlices()

High Fixed

QSP-2 Potential issues due to granularity of
timestamps

High Fixed

QSP-3 Insecure gRPC connection by default High Acknowledged

QSP-4 may exist as a subsequenceroot High Fixed

QSP-5 Use of pseudo random number generator
where true random number generator
would be needed

Medium Fixed

QSP-6 Second pre-image attack on Merkle Trees Medium Acknowledged

QSP-7 Function
doesn't check

ActivationEligibilityEpoch()
v == nil || v.validator

== nil

Medium Fixed

QSP-8 Cast from touint64 int Medium Fixed

QSP-9 Possible loss of data integrity Medium Fixed

QSP-10 Checks before the lock Medium Fixed

QSP-11 DDoS attack vector through creating a
mapping between public keys and
validators’ IPs

Medium Acknowledged

QSP-12 Message encoding is changeable: that
could lead to network partitions

Medium Fixed

QSP-13 Opening BoltDB and backup file varies on
the permission

Medium Fixed

QSP-14 Lack of unit tests Medium Acknowledged

QSP-15 No support for IPv6 Medium Fixed

QSP-16 Presence of the test-only code Medium Fixed

QSP-17 Possible parent block with same slot Low Fixed

QSP-18 No header length validation Low Fixed

QSP-19 Memory resources are never freed in
newBlocksFetcher()

Low Fixed

QSP-20 No meaningful code in
removeDisconnectedPeerStatus()

Low Mitigated

QSP-21 Disk space exhaustion attack Low Acknowledged

QSP-22 Disconnected, stale, or bad peer status
records are not cleaned up

Low Fixed

QSP-23 Connection manager options are not
always initialized correctly

Low Fixed

QSP-24 Boot nodes availability and centralization
risks

Low Acknowledged

QSP-25 Relay option is enabled in libp2p even
when unused in Prysm

Low Fixed

QSP-26 Potential discrepancy between
andNextForkVersion ForkVersionSchedule

Low Fixed

QSP-27 Subnet-based whitelisting not working Low Fixed

QSP-28 Rate limiting not implemented for some
node communication

Low Fixed

QSP-29 Peer descoring and disconnect on failed
validation, while being optional in the
spec, should be considered

Low Acknowledged

QSP-30 Incorrect deadline for responses Low Fixed

QSP-31 Maximum response chunk size not
checked for all topics

Low Fixed

QSP-32 Number of bad responses is not
incremented in the topicGoodbye

Low Unresolved

QSP-33 not checked in
topic
finalized_root Status Low Fixed

QSP-34 Weak passwords allowed for validator
accounts

Low Fixed

QSP-35 Minimal system requirements Low Unresolved

QSP-36 Running out of disk space Low Unresolved

QSP-37 returns when
both and are
areEth1DataEqual() false

a b nil
Informational Fixed

QSP-38 Double unsubscribe Informational Fixed

QSP-39 Undefined behaviour of
when no peers are connected or some
peers have no finalized epochs

BestFinalized() Informational Fixed

QSP-40 Eclipse attacks are still possible Informational Acknowledged

QSP-41 Potentially meaningless check Informational Fixed

QSP-42 Connection manager does not work
properly

Informational Fixed

QSP-43 One-time calibration of Roughtime Informational Fixed

QSP-44 Possibly unintentional fallback to TCP
encryption

Informational Fixed

QSP-45 NOISE support has no fallback Informational Fixed

QSP-46 Signature validation for block attestations
is conditional on feature flag

Informational Mitigated

https://github.com/prysmaticlabs/prysm/issues/6327

ID Description Severity Status

QSP-47 may return empty stringDefaultDataDir() Informational Fixed

QSP-48 Support for extra pubsub protocols Informational Fixed

QSP-49 Deprecated dependencyjsonpb Informational Acknowledged

QSP-50 Undocumented Kafka topics Informational Unresolved

QSP-51 Inconsistent spans Informational Fixed

QSP-52 Wrong StartSpan Informational Fixed

QSP-53 Functions do not add summary to the
cache

Informational Acknowledged

QSP-54 Function finishes
prematurely

processPendingAtts() Undetermined Fixed

QSP-55 Corrupted clock Undetermined Acknowledged

QSP-56 The variable gets incremented
when it is non-zero

voteCount Undetermined Fixed

QSP-57 Inconsistent updatesrebuildTrie Undetermined Fixed

QSP-58 Using instead of
contradicts the

specification

UnshuffleList()
ShuffleList()

Undetermined Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Integer overflow / underflow•

Number rounding errors•

Denial of service / logical oversights•

Access control•

Business logic contradicting the specification•

Code clones, functionality duplication•

Second pre-image attacks on Merkle Trees•

Client synchronization•

Remote code execution•

Data integrity loss•

Outdated data in cache•

Consensus splits•

Injection type attacks•

Invalid incoming messages•

Falsified messages•

Replay attacks•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the code.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

3. Best practices review, which is a review of the code to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your code.

Findings

QSP-1 The functions , and may return union instead of intersectionIntersectionUint64() IntersectionInt64() IntersectionByteSlices()

Severity: High Risk

FixedStatus:

File(s) affected: shared/sliceutil/slice.go

The functions , and work correctly only for 2 arguments, i.e., they return intersections. In case
more arguments are provided, the functions may return their union.
Description: IntersectionUint64() IntersectionInt64() IntersectionByteSlices()

The intersection functions are used indirectly to find blocks or block roots with a filter. They are then used by to save finalized checkpoints. Consequently, it
might be possible to consider some blocks as part of the checkpoint (although they shouldn't be) which could lead to consensus splits.

SaveFinalizedCheckpoint()

The call returns instead of .Exploit Scenario: IntersectionUint64([]uint64{2, 3},[]uint64{2, 3, 5},[]uint64{5}) {2,3,5} {}

The issue is fixed in . We do not have any other recommendations.Recommendation: PR#6067

https://github.com/prysmaticlabs/prysm/pull/6067

QSP-2 Potential issues due to granularity of timestamps

Severity: High Risk

FixedStatus:

According to specification:Description:

The block is not from a future slot (with a `MAXIMUM_GOSSIP_CLOCK_DISPARITY` allowance) -- i.e. validate that signed_beacon_block.message.slot <= current_slot

There exists an edge case scenario, however, where this condition would be satisfied for a time that is actually in the future.

Consider the following:Exploit Scenario:

slotTime := 1000 * (genesisTime + slot*params.BeaconConfig().SecondsPerSlot)
currentTime := 1000 * uint64(roughtime.Now().Unix())
tolerance := uint64(timeTolerance.Milliseconds()) // 500ms
if slotTime > currentTime+tolerance { … }

Let’s say that is 5000s, and actual time represented by is 5900 ms. However, since returns time in seconds - that is, it returns 5s,
and ends up being 5000 (same as). However, an actual current time is 5900s, which is 900ms higher than , but 900ms is bigger than 500ms. Therefore, the
time difference is actually higher than .

slotTime roughtime.Now() roughtime.Now().Unix()
currentTime slotTime slotTime

MAXIMUM_GOSSIP_CLOCK_DISPARITY

If tolerance is less than a second, it makes more sense to do time computations in milliseconds directly, rather than using seconds and then multiplying by 1000. Use
instead of just . Same applies to validating other things, e.g., attestations.

Recommendation:
https://golang.org/pkg/time/#Time.UnixNano .Unix()

the team fixed the .Update: Issue#6103

QSP-3 Insecure gRPC connection by default

Severity: High Risk

AcknowledgedStatus:

When running the beacon-chain the default setting is not using a secure gRPC connection. Users might not see this (or ignore) this warning:Description:

WARN node: Removing database
[2020-05-06 16:09:22] INFO node: Checking DB database-path=/home/sebi/prysm/beaconchaindata
[2020-05-06 16:09:22] INFO node: Starting beacon node version=Prysm/Git commit: 7bea2373975e8c3714a8e943ff0dba83ca3b0a07. Built at: 2020-05-06T16:08:52+02:00
[2020-05-06 16:09:22] INFO blockchain: Waiting to reach the validator deposit threshold to start the beacon chain...
[2020-05-06 16:09:22] INFO rpc: RPC-API listening on port address=0.0.0.0:4000
[2020-05-06 16:09:22] WARN rpc: You are using an insecure gRPC connection! Provide a certificate and key to connect securely

This could lead to Man-in-the-Middle (MITM) attacks.

Generate a key and certificate via the start scripts by default.Recommendation:

QSP-4 may exist as a subsequenceroot

Severity: High Risk

FixedStatus:

File(s) affected: beacon-chain/db/kv/utils.go

In , it could be the case that exists as a subsequence between two values, instead of matching an entire value.Description: deleteValueForIndices() root

We recommend changing the condition:Recommendation:

if start == -1 {
continue

}

to

if (start == -1) || (start % 32 != 0) {
continue

}

The issue was fixed in .Update: PR#6034

QSP-5 Use of pseudo random number generator where true random number generator would be needed

Severity: Medium Risk

FixedStatus:

, ,
,

File(s) affected: beacon-chain/rpc/validator/proposer.go beacon-chain/sync/initial-sync/blocks_fetcher.go beacon-chain/sync/initial-sync-
old/round_robin.go shared/testutil/block.go

PRNGs should not be used for security relevant reasons such as:Description:

setting random roots and block hashes to prevent a majority from being built if the eth1 node is offline, see•
L222-223 in beacon-chain/rpc/validator/proposer.go•

randomly selecting failover peer from the list of available peers, see•
L417 in beacon-chain/sync/initial-sync/blocks_fetcher.go•

shuffling peers to prevent a bad peer from stalling sync with invalid blocks, see•
L455 in beacon-chain/sync/initial-sync/blocks_fetcher.go•

L72 in beacon-chain/sync/initial-sync-old/round_robin.go•

randomly picking the validator generating attester slashing, see•
L301, 306 in shared/testutil/block.go•

randomly selecting the peer from which to check slots after the given one in an attempt to find non-empty future slot, see•
L479 in beacon-chain/sync/initial-sync/blocks_fetcher.go•

Use package instead of .Recommendation: crypto/rand math/rand
the issue is fixed in .Update: PR#6401

QSP-6 Second pre-image attack on Merkle Trees

https://golang.org/pkg/time/#Time.UnixNano
https://github.com/prysmaticlabs/prysm/issues/6103
https://github.com/prysmaticlabs/prysm/issues/6034
https://github.com/prysmaticlabs/prysm/pull/6401

Severity: Medium Risk

AcknowledgedStatus:

File(s) affected: beacon-chain/state/stateutil/arrays.go

Functions from are used across the codebase. They are vulnerable to since there is no distinction
made between leaf and intermediate nodes, nor the information about the number of elements is hashed with the root. A similar comment applies to the (related) functions
from , from , and in . The latter,
however, appears to be unused.

Description: beacon-chain/state/stateutil/arrays.go second pre-image attack
HashTreeRoot()

beacon-chain/state/state_trie.go recomputeRoot() beacon-chain/state/setters.go MerkleRoot() shared/hashutil/merkleRoot.go

The second pre-image attack could allow an attacker to propagate a block that verifies correctly but contains information that differs from another block with the same set of Merkle tree
hashes. Although unlikely, it could result in a DoS attack.

Similarly to other parts of the code, we recommend adding the information about the number of elements into the root. We also recommend removing the unused function
.

Recommendation:
MerkleRoot()

the issue is partially fixed in .Update: PR#7115

QSP-7 Function doesn't checkActivationEligibilityEpoch() v == nil || v.validator == nil

Severity: Medium Risk

FixedStatus:

File(s) affected: beacon-chain/state/getters.go

The function is used in a few places in the codebase. Unlike other functions, it doesn't check the condition
. Consequently, it may fail and crash the client.

Description: ActivationEligibilityEpoch() v == nil || v.validator ==
nil

Add the check before returning .Recommendation: if v == nil || v.validator == nil { return 0 } v.validator.ActivationEligibilityEpoch
the issue is fixed in .Update: PR#6347

QSP-8 Cast from touint64 int

Severity: Medium Risk

FixedStatus:

, , ,
,

File(s) affected: beacon-chain/sync/pending_blocks_queue.go beacon-chain/rpc/validator/proposer.go beacon-chain/core/state/state.go beacon-
chain/powchain/service.go beacon-chain/rpc/beacon/validators.go

In L141 the function casts slots to from . This may result in incorrect data for large values of .Description: sortedPendingSlots() int uint64 slotToPendingBlocks
Similar issues occur in:

• beacon-chain/rpc/validator/proposer.go#324

• beacon-chain/rpc/validator/proposer.go#296

, on L81, L86• beacon-chain/core/state/state.go

• beacon-chain/powchain/service.go#175

, on L84, L98, L228, L242• beacon-chain/rpc/beacon/validators.go

Review all unsafe casts from a type T0 to a type T1 such that T1 is a proper subset of T0 (e.g., converting to), either asserting that (1) the cast is safe (an
exception can never occur during runtime) or (2) change types when the latter property is not guaranteed.
Recommendation: uint64 int

the issue is fixed in and .Update: PR#6349 PR#6039

QSP-9 Possible loss of data integrity

Severity: Medium Risk

FixedStatus:

, ,File(s) affected: beacon-chain/forkchoice/protoarray/store.go beacon-chain/state/getters.go beacon-chain/state/state_trie.go

The function on L103 does not acquire an . Although it is not directly using , if is locked by
another process, it implicitly means that is being updated.
Description: Nodes() f.store.nodeIndicesLock.RLock() nodeIndices nodeIndices

f.store.nodes
Similarly, the function does not acquire an unlike the other block header-related getters. Is there a reason that the getters do not require locking?ParentRoot() RLock() Eth1*
The function does not acquire an , which may lead to an incorrect value if is being modified.NumValidators() RLock() validators
The finalizer for a , as defined on L156, does not acquire the lock before updating refs on L160. This is in contrast to L138-140. Note: the Go garbage collector runs
concurrently to mutator threads.

BeaconState FieldTrie

Unless it is safe not to, we recommend using the locks.Recommendation:
the issue is fixed in .Update: PR#6350

QSP-10 Checks before the lock

Severity: Medium Risk

FixedStatus:

,File(s) affected: beacon-chain/state/getters.go beacon-chain/state/setters.go

Certain bound checks occur before acquiring a lock. It is not clear why certain checks occur before acquiring a lock.Description: idx
For example, incorrectly does the check on L408 before the lock, whereas correctly does the check on L445 after the lock.ValidatorAtIndex() ValidatorAtIndexReadOnly()
Another example; consider , and note the check on L159, ensuring that the provided will not be out-of-bounds when writing to an index in ,
which is performed before acquiring the lock on L181. The following type of scenario could occur:

UpdateStateRootAtIndex() idx StateRoots

1. The check on L159 passes, and the thread waits for the lock on L181.

2. Elsewhere, the are updated, possibly decreasing the length below .StateRoots idx

3. The thread from step 1 acquires the lock, causing an error on L184.

We recommend performing index checks after acquiring the lock.Recommendation:
the issue is fixed in .Update: PR#6350

https://en.wikipedia.org/wiki/Merkle_tree#Second_preimage_attack
https://github.com/prysmaticlabs/prysm/pull/7115
https://github.com/prysmaticlabs/prysm/pull/6347
https://github.com/prysmaticlabs/prysm/pull/6349
https://github.com/prysmaticlabs/prysm/pull/6039
https://github.com/prysmaticlabs/prysm/pull/6350
https://github.com/prysmaticlabs/prysm/pull/6350

QSP-11 DDoS attack vector through creating a mapping between public keys and validators’ IPs

Severity: Medium Risk

AcknowledgedStatus:

It is possible to DDoS the system by attacking block proposers and/or committee members. Such an attack would rely on a mapping between validators’ public keys and their IP
addresses. Furthermore, one can detect the roles of a validator with a certain public key based on the tables of validator indices and the functions such as .
Description:

precomputeProposerIndices()
Once an attacker has the mapping of public keys and IPs, the attacker can target them based on their roles. The more complete the mapping is, the higher possibility for an attacker to DDoS
the system from proposing new blocks. There’s no need, however, for this mapping to be complete in order to harm the system. When an attacker learns the IP of a validator, the attacker could
have the validator slashed by DDoSing the validator when it plays a role of a committee member.

The mapping between public key and the IP of a validator could be learned by checking all the attestations sent in by the other peers. If a peer sent in an attestation which is
not an aggregated attestation (i.e., could check this using the function), one can assume that the peer is the attester of that attestation. Thus, we know the peer’s IP and also
their public key.

Exploit Scenario:
IsAggregated()

We recommend designing a mechanism in which attesters send only aggregated attestations. The more attestations are in the aggregated attestations, the harder it is for an
attacker to learn the mapping between the public key of a peer and its IP.
Recommendation:

it is an issue with the ETH 2.0 specification and needs to be resolved there first.Update:

QSP-12 Message encoding is changeable: that could lead to network partitions

Severity: Medium Risk

FixedStatus:

According to specification implementations MUST use a single encoding. Changing an encoding will require coordination between participating implementations.Description:
While the current testnet is using a single encoding, clients are currently allowed to switch encodings for a given client from regular SSZ to Snappy, which could lead to network partitions.

The risk could be mitigated by better documentation and defining a strategy for mainnet transition. When transitioning to mainnet that uses Snappy, two options are
possible: a fallback support for non-snappy, or a coordination of network participants to switch to Snappy and changing the implementation to use Snappy by default.
Recommendation:

the issue is fixed in .Update: PR#6415

QSP-13 Opening BoltDB and backup file varies on the permission

Severity: Medium Risk

FixedStatus:

Opening BoltDB and backup file varies on the permission - sometimes it is , others .Description: 0666 0600

Be consistent about permissions.Recommendation:
the issue is fixed in .Update: PR#6378

QSP-14 Lack of unit tests

Severity: Medium Risk

AcknowledgedStatus:

Overall, many pieces of the code lack unit tests. The lack of tests always adds risks to a project.Description:

We highly recommend adding unit tests.Recommendation:

QSP-15 No support for IPv6

Severity: Medium Risk

FixedStatus:

File(s) affected: beacon-chain/p2p/discovery.go

When booting, the node ignores IPv6 nodes. Also, currently the implementation tries to convert IP address to IPv4, if it fails, then the node exits with a fatal message in .
Note that not all IPv6 IPs can be converted to IPv4, thus essentially forces the node to use IPv4.
Description: main.go

In , the function expects IPv4 only and would throw when an IPv6 is passed in. The function is used in several places, mostly related when
booting up the node. This has the following consequences:
discovery.go convertToSingleMultiAddr()

Boot node has to be in IPv4•

Static nodes has to be in IPv4•

Any peers returned by the boot node has to be in IPv4•

According to the specification Clients MAY choose to listen only on IPv6, but MUST be capable of dialing both IPv4 and IPv6 addresses.

Allow the node to use IPv6.Recommendation:
the issue is fixed in .Update: PR#6363

QSP-16 Presence of the test-only code

Severity: Medium Risk

FixedStatus:

File(s) affected: beacon-chain/p2p/service.go

In L62, the handling of the "protocol not supported" error can currently lead to maintaining connection with a peer that does not support the given protocol, and it may not
necessarily be a relayer or a DHT node.
Description:

We recommend removing the logic and handling the unsupported protocol exception properly.Recommendation:
the issue is fixed in .Update: PR#6425

QSP-17 Possible parent block with same slot

https://github.com/prysmaticlabs/prysm/pull/6415
https://github.com/prysmaticlabs/prysm/pull/6378
https://github.com/prysmaticlabs/prysm/pull/6363
https://github.com/prysmaticlabs/prysm/pull/6425

Severity: Low Risk

FixedStatus:

File(s) affected: beacon-chain/core/state/transition.go

A design flaw in the ETH 2.0 specification allows for producing a block with a parent block of the same slot.Description:

The issue has been fixed in and . We have no other recommendation.Recommendation: PR#5842 PR#5846

QSP-18 No header length validation

Severity: Low Risk

FixedStatus:

File(s) affected: beacon-chain/p2p/encoder/ssz.go

According to the specification
Despite the 1MB limit in the code (L18, L21), the 10B header does not appear to be validated anywhere in the code.

Description: Before reading the payload, the header MUST be validated: The unsigned protobuf varint used for the length-prefix MUST not be longer than 10 bytes,
which is sufficient for any uint64.

We recommend adding header length validation.Recommendation:
the issue is fixed in .Update: PR#6577

QSP-19 Memory resources are never freed in newBlocksFetcher()

Severity: Low Risk

FixedStatus:

File(s) affected: beacon-chain/sync/initial-sync/block_fetcher.go

Line 86 uses a hardcoded argument on so that empty buckets are never deleted. As per the in , this will not be freeing
memory resources.
Description: false newBlocksFetcher() comment leakybucket-go

We recommend verifying that this is the intended behavior, and, perhaps documenting rationale for it.Recommendation:
the issue is fixed in .Update: PR#6339

QSP-20 No meaningful code in removeDisconnectedPeerStatus()

Severity: Low Risk

MitigatedStatus:

File(s) affected: beacon-chain/sync/rpc_status

Line 130 is missing any meaningful code in . It just returns .Description: removeDisconnectedPeerStatus() nil

If this is a bug, include a todo and fix. If this is intended, as a best practice, comment on this.Recommendation:
the issue is mitigated in .Update: PR#6370

QSP-21 Disk space exhaustion attack

Severity: Low Risk

AcknowledgedStatus:

When the chain goes through a long period of finality, it keeps many recent beacon states on disk. Beacon states are expensive in size and 100 epochs worth can easily inflate the
DB to large sizes. This is a potential attack vector where the attacker may be able to stall the chain long enough that Prysm nodes run out of storage. Under normal conditions, Prysm cleans up
recent states when finality is reached, keeping only checkpoints around.

Description:

It is unclear how one could purposely execute such an attack without controlling a large portion of the network, but it can be feasible during low participation periods. As the attack would
progress and nodes would be unable to operate, the control effect would compound, possibly leading to a temporary network takeover.
This issue has been reported as Issue#6215

We recommend devising a mechanism for freeing disk resources when the space is running low.Recommendation:
the issue is acknowledged in .Update: PR#6215

QSP-22 Disconnected, stale, or bad peer status records are not cleaned up

Severity: Low Risk

FixedStatus:

,File(s) affected: beacon-chain/p2p/peers/status.go beacon-chain/p2p/service.go

We did not find any mechanism for cleaning up the peer status information. This could lead to the map growing over time and containing too many items defining
peers that no longer exist or that are bad/malicious. This is also a potential DoS attack vector. As it is easy to create a new libp2p peer id, an attacker can keep creating new peer id and connect
to the same node over and over again, causing the node to grow the records rapidly and cause memory issues.

Description: Status.status

Cleanup the peer info periodically. Potentially, introduce a periodic task similar to and run it using in .Recommendation: Decay() runEvery() service.go
the issue is fixed in .Update: PR#6614

QSP-23 Connection manager options are not always initialized correctly

Severity: Low Risk

FixedStatus:

File(s) affected: beacon/chain/p2p/options.go

Connection manager is always initialized as follows:
. The comment says the extra peers are for the bootnode and the relay, however, the number of bootnodes could (and should be) be above one, while having a relay is

optional, making the constant of inaccurate.

Description: libp2p.ConnectionManager(connmgr.NewConnManager(int(cfg.MaxPeers+2), int(cfg.MaxPeers+2),
1*time.Second)) 2

2

Adjust the number of peers based on the number of bootnodes and the relay flag.Recommendation:
connection manager has been replaced by connection gater in and .Update: PR#6184 PR#6243

https://github.com/prysmaticlabs/prysm/pull/5842
https://github.com/prysmaticlabs/prysm/pull/5846
https://github.com/prysmaticlabs/prysm/pull/6577
https://github.com/kevinms/leakybucket-go/blob/master/collector.go
https://github.com/prysmaticlabs/prysm/pull/6339
https://github.com/prysmaticlabs/prysm/pull/6370
https://github.com/prysmaticlabs/prysm/issues/6215
https://github.com/prysmaticlabs/prysm/pull/6215
https://github.com/prysmaticlabs/prysm/pull/6614
https://github.com/prysmaticlabs/prysm/pull/6184
https://github.com/prysmaticlabs/prysm/pull/6243

QSP-24 Boot nodes availability and centralization risks

Severity: Low Risk

AcknowledgedStatus:

By default, the testnet seems to be equipped with two boot nodes, but for different protocols: Discovery V5 and Kademlia DHT:Description:

INFO p2p: Bootnodes dv5Nodes=[enr:-Ku4QAGwOT9StqmwI5LHaIymIO4ooFKfNkEjWa0f1P8OsElgBh2Ijb-GrD_-b9W4kcPFcwmHQEy5RncqXNqdpVo1heoBh2F0dG5ldHOIAAAAAAAAAACEZXRoMpAAAAAAAAAAAP__________gmlkgnY0gmlwhBL
f22SJc2VjcDI1NmsxoQJxCnE6v_x2ekgY_uoE1rtwzvGy40mq9eD66XfHPBWgIIN1ZHCCD6A] kadDHTNodes=[/dns4/prylabs.net/tcp/30001/p2p/16Uiu2HAm7Qwe19vz9WzD2Mxn7fXd1vgHHp4iccuyq7TxwRXoAGfc]

Since Kademlia DHT is not a part of the spec, for peers that only support discovery-V5, there is only one bootnode available.

The single discovery V5 boot node could be DoS’ed or just lose network connectivity, which could lead to new peers being unable to join the network.Exploit Scenario:

To improve connection availability, we recommend to have at least two Discovery V5 boot nodes located in different “availability zones” (or data centers). Also, we recommend
documenting the bootnodes on the parameter page: .
Recommendation:

https://docs.prylabs.network/docs/prysm-usage/parameters/

QSP-25 Relay option is enabled in libp2p even when unused in Prysm

Severity: Low Risk

FixedStatus:

File(s) affected: beacon/chain/p2p/options.go

In L26: is called regardless of whether is provided or not. While we do not see a risk, it is difficult to guarantee that libp2p’s behavior is
equivalent (or will always be equivalent in the future) in cases when is called (but relayer address not provided) and when is not called.
Description: libp2p.EnableRelay() RelayNodeAddr

libp2p.EnableRelay() libp2p.EnableRelay()

Enabling this option only when is provided.Recommendation: RelayNodeAddr
the issue is fixed in .Update: PR#6386

QSP-26 Potential discrepancy between andNextForkVersion ForkVersionSchedule

Severity: Low Risk

FixedStatus:

File(s) affected: shared/p2putils/fork.go

In L36, is determined by iterating over items in . However, in , L92 (), for the
ENR, is taken from the constant. While it could work for many cases (including the scenario when no forks are scheduled), there could be a scenario
when does not match any of the items in .

Description: currentForkVersion ForkVersionSchedule beacon-chain/p2p/fork.go addForkEntry()
NextForkVersion NextForkVersion
NextForkVersion ForkVersionSchedule

If the given behavior is unexpected, consider adding an assertion or implicitly including in .Recommendation: NextForkVersion ForkVersionSchedule
the issue is fixed in .Update: PR#5997

QSP-27 Subnet-based whitelisting not working

Severity: Low Risk

FixedStatus:

The command line parameter does not seem to work properly. When provided "192.168.0.0/16" as the value, the node still managed to connect to seven peers
that are outside the current network.
Description: --p2p-whitelist

Check the whitelisting logic, ensure this is correct, and fix as necessary.Recommendation:
the issue is fixed in .Update: PR#6251

QSP-28 Rate limiting not implemented for some node communication

Severity: Low Risk

FixedStatus:

It is possible to flood a node with valid but useless requests. Specifically, when the node receives a or request, it always responds without rate limiting.
This is a potential DoS vector that one node can flood another node with these messages.
Description: GetStatus GetMetadata

Implement rate limiting for node communication to eliminate the possibility of a DoS attack.Recommendation:
the issue is fixed in .Update: PR#6606

QSP-29 Peer descoring and disconnect on failed validation, while being optional in the spec, should be considered

Severity: Low Risk

AcknowledgedStatus:

According to specification .Description: when processing incoming gossip, clients may descore or disconnect peers who fail to observe these constraints
The implementation conforms to the spec, i.e., no descoring or disconnect happens at the commit being audited. This opens attack vectors, however, related to the ability of a malicious peer to
keep poisoning the network with unsupported topics or invalid messages.

Consider counting invalid topics and messages received from each peer. Once a critical number has reached, the peer needs to be banned for a certain amount of time.Recommendation:
The team responded that this is mostly contained in libp2p's gossipsub library. Descoring of peers is mostly handled in their library but with the current update to v1.1 , gossipsub's topic

validators take into account validation results when scoring peers. , , are validation results for pubsub messages which are
then used to score peers. The issue is acknowledged in .

Update:
ValidationAccept ValidationReject ValidationIgnore

PR#6622

QSP-30 Incorrect deadline for responses

Severity: Low Risk

FixedStatus:

,File(s) affected: beacon-chain/p2p/sender.go beacon-chain/sync/rpc_chunked_response.go

The P2P specification says that: “The requester MUST wait a maximum of for the first response byte to arrive (time to first byte—or TTFB—timeout). On thatDescription: TTFB_TIMEOUT

https://docs.prylabs.network/docs/prysm-usage/parameters/
https://github.com/prysmaticlabs/prysm/pull/6386
https://github.com/prysmaticlabs/prysm/pull/5997
https://github.com/prysmaticlabs/prysm/pull/6251
https://github.com/prysmaticlabs/prysm/pull/6606
https://github.com/prysmaticlabs/prysm/pull/6622

happening, the requester allows a further for each subsequent response_chunk received.” According to specification is 5s. It is the maximum time to wait for the
first byte of request response (time-to-first-byte).

RESP_TIMEOUT TTFB_TIMEOUT

However, the deadline is set to:

// TTFB_TIME (5s) + RESP_TIMEOUT (10s).
var deadline = params.BeaconNetworkConfig().TtfbTimeout + params.BeaconNetworkConfig().RespTimeout

on in . This deadline is used by the following topics:L24 beacon-chain/p2p/sender.go

• beacon-chain/sync/rpc_beacon_blocks_by_root.go#21

• beacon-chain/sync/rpc_goodbye.go#50

• beacon-chain/sync/rpc_metadata.go#36

• beacon-chain/sync/rpc_ping.go#57

• beacon-chain/sync/rpc_chunked_response.go#44

.• beacon-chain/sync/rpc_status.go#92

We recommend verifying the behavior and fixing it if it is incorrect.Recommendation:
the issue is fixed in .Update: PR#6583

QSP-31 Maximum response chunk size not checked for all topics

Severity: Low Risk

FixedStatus:

File(s) affected: beacon-chain/p2p/encoder/ssz.go

The P2P specification says that .Description: the encoded-payload of a has a maximum uncompressed byte size ofresponse_chunk MAX_CHUNK_SIZE
However, this is only checked by the function in , which is used by 2 out of 6 topics, namely:EncodeWithMaxLength() beacon-chain/p2p/encoder/ssz.go

• beacon-chain/sync/rpc_beacon_blocks_by_range.go#L143

, see L116, 26.• beacon-chain/sync/rpc_beacon_blocks_by_root.go

The size of the response chunk is not checked explicitly for the other topics.

Check that the size of the response chunk is less than for all other topics.Recommendation: MAX_CHUNK_SIZE
the issue is fixed in .Update: PR#6424

QSP-32 Number of bad responses is not incremented in the topicGoodbye

Severity: Low Risk

UnresolvedStatus:

File(s) affected: beacon-chain/sync/rpc_goodbye.go

According to the specificationDescription: in case of an invalid input, a reader MUST:

• From responses: ignore the response, the response MUST be considered bad server behavior.

The number of bad responses is incremented for all topics with the exception of the topic, whose handlers are inGoodbye beacon-chain/sync/rpc_goodbye.go

Increment number of bad responses in .Recommendation: beacon-chain/sync/rpc_goodbye.go

QSP-33 not checked in topicfinalized_root Status

Severity: Low Risk

FixedStatus:

File(s) affected: beacon-chain/sync/rpc_status.go

According to the specification . For example, if Peer 1 sends
(root, epoch) of (A, 5) and Peer 2 sends (B, 3) but Peer 1 has root C at epoch 3, then Peer 1 would disconnect because it knows that their chains are irreparably disjoint.
Description: if the (,) shared by the peer is not in the client's chain at the expected epochfinalized_root finalized_epoch

In the following code of the Status topic handler, only the is checked:finalized_epoch

func (r *Service) validateStatusMessage(msg *pb.Status, stream network.Stream) error {
forkDigest, err := r.forkDigest()
if err != nil {

return err
}
if !bytes.Equal(forkDigest[:], msg.ForkDigest) {

return errWrongForkDigestVersion
}
genesis := r.chain.GenesisTime()
maxEpoch := slotutil.EpochsSinceGenesis(genesis)
// It would take a minimum of 2 epochs to finalize a
// previous epoch
maxFinalizedEpoch := maxEpoch - 2
if msg.FinalizedEpoch > maxFinalizedEpoch {

return errInvalidEpoch
}
return nil

}

Check the in .Recommendation: finalized_root beacon-chain/sync/rpc_status.go
the issue is fixed in and .Update: PR#5811 PR7364

QSP-34 Weak passwords allowed for validator accounts

Severity: Low Risk

FixedStatus:

The reviewed code allows weak passwords for validator accounts. Validators might have their passwords cracked. After running the script
, the following is displayed:

Description: ./prysm.sh validator accounts
create

[2020-05-06 18:08:54] WARN flags: Using default mainnet config
[2020-05-06 18:08:54] WARN flags: Disabled validator proposal slashing protection.
[2020-05-06 18:08:54] WARN flags: Disabled validator attestation slashing protection.
[2020-05-06 18:08:54] INFO accounts: Create a new validator account for eth2
[2020-05-06 18:08:54] INFO accounts: Enter a password:

This should be prohibited by enforcing a password policy on the client side.Recommendation:
the issue is fixed in commit .Update: 9916476

https://github.com/prysmaticlabs/prysm/pull/6583
https://github.com/prysmaticlabs/prysm/pull/6424
https://github.com/prysmaticlabs/prysm/pull/5811
https://github.com/prysmaticlabs/prysm/pull/7364
https://github.com/prysmaticlabs/prysm/commit/99164761f555178bdb5577ed422f8f4aca7d0dfb

QSP-35 Minimal system requirements

Severity: Low Risk

UnresolvedStatus:

File(s) affected: beacon-chain/blockchain/service.go

Upon start, beacon-node does not check if minimal system requirements are met. Validators may not be aware of system requirements; if many validators face the same issue, the
whole network may not perform as expected.
Description:

We recommend issuing a warning message if minimal requirements are not met.Recommendation:

QSP-36 Running out of disk space

Severity: Low Risk

UnresolvedStatus:

When the beacon node removes data in the database (e.g., when pruning garbage state), the corresponding space in disk is not freed, as BoltDB does NOT perform any clean-up.Description:

As a means to prevent large databases as much as possible, document how users can properly claim space for any freed data; otherwise, their node can eventually run out of
disk space.
Recommendation:

QSP-37 returns when both and areareEth1DataEqual() false a b nil

Severity: Informational

FixedStatus:

File(s) affected: beacon-chain/core/blocks/block_operations.go

If both and are , returns despite the arguments being equal.Description: a b nil areEth1DataEqual() false

We checked the behavior of the function with the team. The function is supposed to return when both and are . We recommend, however, renaming the
function to avoid any confusion.
Recommendation: false a b nil

the issue is fixed in .Update: PR#6372

QSP-38 Double unsubscribe

Severity: Informational

FixedStatus:

File(s) affected: beacon-chain/sync/initial-sync/service.go

Line 90 defers , and then line 112 unsubscribes again. This looks like a double call.Description: unsubscribe()

We recommend providing a rationale for why both statements are required.Recommendation:
the issue is fixed in , and .Update: PR#6368 PR#6376 PR#7285

QSP-39 Undefined behaviour of when no peers are connected or some peers have no finalized epochsBestFinalized()

Severity: Informational

FixedStatus:

File(s) affected: beacon-chain/p2p/peers/status.go

In line 430, in the method, if or ends up being an empty list, defined on L477 remains , which potentially, leads to
issues trying to access .
Description: BestFinalized() connected finalized targetRoot nil

targetEpoch := rootToEpoch[targetRoot]

Add a check for the number of connected nodes within the method itself, and return what feels appropriate for such a scenario.Recommendation:
the issue is fixed in .Update: PR#6402

QSP-40 Eclipse attacks are still possible

Severity: Informational

AcknowledgedStatus:

The current implementation of DiscoveryV5 is still susceptible to the Eclipse attack, as there was a previous audit that indicated it is trivial to perform the attack on DiscoveryV5 in
October, 2019. From the issues linked in the report, it seems that there is no resolution to this yet. See the references:
Description:

• Issue#122

• Issue#109

This is an issue in the current DiscoveryV5 and NOT the implementation of Prysmatic team. However, we still believe that it is important that the Prysmatic team is aware of the issue so that the
system can be patched when a fix is ready in the DiscoveryV5.

Monitor the state of DiscoveryV5 and upgrade when the issue is fixed.Recommendation:

QSP-41 Potentially meaningless check

Severity: Informational

FixedStatus:

File(s) affected: beacon-chain/p2p/addr_factory.go

We found that addresses are checked against "/p2p-circuit". As those follow the format, we believe that they would never match "/p2p-circuit" exactly. Perhaps the
original intention is to check whether the string "/p2p-circuit" is part of the provided address.
Description: multiAddr

Verify the intention and fix accordingly. If the original code works as intended, please consider adding comments.Recommendation:
the issue is fixed in .Update: PR#6388

https://github.com/prysmaticlabs/prysm/pull/6372
https://github.com/prysmaticlabs/prysm/pull/6368
https://github.com/prysmaticlabs/prysm/pull/6376
https://github.com/prysmaticlabs/prysm/pull/7285
https://github.com/prysmaticlabs/prysm/pull/6402
https://github.com/ethereum/devp2p/issues/122
https://github.com/ethereum/devp2p/issues/109
https://github.com/prysmaticlabs/prysm/pull/6388

QSP-42 Connection manager does not work properly

Severity: Informational

FixedStatus:

,File(s) affected: beacon-chain/p2p/connmgr/connmgr.go beacon-chain/p2p/handshake.go

The connection manager doesn't trim any node when the peer count exceeds . Currently, the number of connections is being controlled during
handshake. This can be seen in the of .
Description: TrimOpenConns highWater

AddConnectionHandler handshake.go

Fix the connection manager so that it trims the peers properly and remove the control in .Recommendation: handshake.go
connection manager has been replaced by connection gater in and .Update: PR#6184 PR#6243

QSP-43 One-time calibration of Roughtime

Severity: Informational

FixedStatus:

File(s) affected: shared/roughtime/roughtime.go

In Prysm’s wrapper of , the time difference (offset) between the beacon node’s time and server’s times is only calibrated once during init
(). For long running beacon nodes, a lack of recalibration might lead to more distorted offsets.
Description: Roughtime roughtime
shared/roughtime/roughtime.go#27

offset should be recalibrated at a set time interval.Recommendation: Roughtime
the issue is fixed in .Update: PR#6393

QSP-44 Possibly unintentional fallback to TCP encryption

Severity: Informational

FixedStatus:

According to the specification .Description: SecIO with secp256k1 identities will be used for initial interoperability testing
While in the commit we’re auditing default security is for testnet, in newer versions of libp2p comes with a default TLS option as a fallback:Sec.io Sec.io

var DefaultSecurity = ChainOptions(
Security(secio.ID, secio.New),
Security(tls.ID, tls.New),

)

TLS is not in the spec, and therefore, should not be implicitly or explicitly listed as a fallback option.

We recommend specifying SecIO (without the TLS fallback) explicitly upon initialization of libp2p options. Explicitly specify the desired parameters rather than relying on non-
changing defaults.
Recommendation:

the issue is fixed in .Update: PR#6440

QSP-45 NOISE support has no fallback

Severity: Informational

FixedStatus:

File(s) affected: prysm/beacon-chain/p2p/options.go

According to specification the Libp2p-noise secure channel handshake with secp256k1 identities will be used for mainnet.Description:
In the implementation, the NOISE protocol is enabled using the flag in . While it is a valid approach for mainnet transition, it may
be difficult to do the transition without a fallback support for SecIO. The Prysm team, however, is already aware of this, since there is an existing GiHub .

EnableNoise prysm/beacon-chain/p2p/options.go#35
Issue#5410

Similar to multiple encoding support, we recommend defining a strategy for mainnet transition. If fallback to SecIO makes it easy, consider using that. Otherwise, transition
would require coordination of all the nodes to enable the flag simultaneously to avoid partitions.
Recommendation:

the issue is fixed in .Update: PR#6440

QSP-46 Signature validation for block attestations is conditional on feature flag

Severity: Informational

MitigatedStatus:

The specification states that the signature of attestation is valid as a requirement. While signature validation is implemented, it can be disabled by setting
to .

Description:
DisableStrictAttestationPubsubVerification true

If possible, remove this flag for production. Clearly document the implications of setting this flag.Recommendation:
the feature has not been removed, but all block and attestations signatures are verified on finalized blocks by default in .Update: PR#6499

QSP-47 may return empty stringDefaultDataDir()

Severity: Informational

FixedStatus:

File(s) affected: shared/cmd/defaults.go

The function may return an empty string, but it is not handled as mentioned in the comments.Description: DefaultDataDir()

Handle the returned empty string as promised in the comments, or throw an error.Recommendation:
the issue is fixed in .Update: PR#6394

QSP-48 Support for extra pubsub protocols

Severity: Informational

FixedStatus:

According to specification clients MUST support the gossipsub libp2p protocol.Description:
Gossipsub is supported and is the default protocol, but “flood” and “random” are supported as well. Peers using a different protocol may find themselves incompatible with the rest of the

https://github.com/prysmaticlabs/prysm/pull/6184
https://github.com/prysmaticlabs/prysm/pull/6243
https://github.com/prysmaticlabs/prysm/pull/6393
https://github.com/prysmaticlabs/prysm/pull/6440
https://github.com/prysmaticlabs/prysm/issues/5410
https://github.com/prysmaticlabs/prysm/pull/6440
https://github.com/prysmaticlabs/prysm/pull/6499
https://github.com/prysmaticlabs/prysm/pull/6394

network.

Consider phasing out protocols that do not need to be supported.Recommendation:
the issue is fixed in .Update: PR#6419

QSP-49 Deprecated dependencyjsonpb

Severity: Informational

AcknowledgedStatus:

File(s) affected: beacon-chain/db/kafka/export_wrapper.go

is a dependency; however, is currently deprecated.Description: jsonpb jsonpb

Switch to to have more up to date fixes and/or features.Recommendation: protojson
the issue is acknowledged in .Update: PR#6383

QSP-50 Undocumented Kafka topics

Severity: Informational

UnresolvedStatus:

File(s) affected: beacon-chain/db/kafka/export_wrapper.go

List of Kafka topics is not documented. Thus, if a node operator wants to monitor their nodes (e.g., for abnormality detection), they would have to resort to the code to find out
which topics to create and later consume from.
Description: go

Provide documentation on what topics to setup if one is to stream to a Kafka server.Recommendation:

QSP-51 Inconsistent spans

Severity: Informational

FixedStatus:

File(s) affected: beacon-chain/db/kv/archive.go

Unlike other functions, and do not start & end a span.Description: marshalBalances() unmarshalBalances()

We recommend following other operations to start & end a span.Recommendation:
the issue is fixed in .Update: PR#6352

QSP-52 Wrong StartSpan

Severity: Informational

FixedStatus:

File(s) affected: beacon-chain/db/kv/archived_point.go

On L25, refers to . It should be .Description: StartSpan BeaconDB.SaveHeadBlockRoot BeaconDB.SaveLastArchivedIndex
On L75, refers to . It should be .StartSpan BeaconDB.ArchivePointRoot BeaconDB.ArchivedPointRoot

Change string argument to and , respectively.Recommendation: BeaconDB.SaveLastArchivedIndex BeaconDB.ArchivedPointRoot
the issue is fixed in .Update: PR#6352

QSP-53 Functions do not add summary to the cache

Severity: Informational

AcknowledgedStatus:

File(s) affected: beacon-chain/db/kv/state_summary.go

The functions and do not add the summary to the cache, which is unexpected.Description: SaveStateSummary() SaveStateSummaries()

Put the summary in the cache or at least provide further documentation in code justifying why that is not the case.Recommendation:
the issue is acknowledged in .Update: PR#6384

QSP-54 Function finishes prematurelyprocessPendingAtts()

Severity: Undetermined

FixedStatus:

File(s) affected: beacon-chain/sync/pending_attestations_queue.go

In line 124, in a loop, the function terminates (without an error). The current code will represent a success for line 32. Is this intended? Would it make sense to use continue/break
instead? Should it return an error?
Description:

We recommended documenting the desired behavior and adding a log.Recommendation:
the issue is fixed in .Update: PR#6371

QSP-55 Corrupted clock

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: beacon-chain/sync/deadlines.go

This file uses system time, because uses it too. If the system clock becomes corrupted (the time never passes), what will the consequences be?Description: libp2p

We recommend documenting the consequences.Recommendation:

https://github.com/prysmaticlabs/prysm/pull/6419
https://github.com/prysmaticlabs/prysm/pull/6383
https://github.com/prysmaticlabs/prysm/pull/6352
https://github.com/prysmaticlabs/prysm/pull/6352
https://github.com/prysmaticlabs/prysm/pull/6384
https://github.com/prysmaticlabs/prysm/pull/6371

the issue is acknowledged in .Update: PR#6404

QSP-56 The variable gets incremented when it is non-zerovoteCount

Severity: Undetermined

FixedStatus:

File(s) affected: beacon-chain/core/blocks/block_operations.go

It is unclear why the variable gets incremented when it is non-zero.Description: voteCount

The team removed vote cache and the operation that increments in . We have no other recommendation.Recommendation: voteCount PR#5792

QSP-57 Inconsistent updatesrebuildTrie

Severity: Undetermined

FixedStatus:

File(s) affected: beacon-chain/state/setters.go

In , there are 7 cases that rebuild the trie if the corresponding boolean is set: , , , ,
, , . For each of these fields, the corresponding setter functions have a statement of the

form . However, this is missing for .

Description: state_trie.rootSelector() blockRoots stateRoots eth1DataVotes validators
randaoMixes previousEpochAttestations currentEpochAttestations

b.rebuildTrie[field] = true SetBlockRoots()

We recommend double checking whether should be updated or not.Recommendation: rebuildTrie
the issue is fixed in .Update: PR#6390

QSP-58 Using instead of contradicts the specificationUnshuffleList() ShuffleList()

Severity: Undetermined

FixedStatus:

File(s) affected: beacon-chain/core/helpers/committee.go

The code uses instead of on:Description: UnshuffleList() ShuffleList()

1. L140, which contradicts the spec in L126.

2. L294, which contradicts the description on L277.

According to the spec a committee is a shuffled set of validators (see the spec in the function’s code comment). Note that when the function calls
which calls , the passed to are a sorted slice of indices.

BeaconCommitteeFromState()
BeaconCommittee() ComputeCommittee() indices ComputeCommittee()
Although may shuffle a list that wasn't previously shuffled, it is unclear why it is used instead of .UnshuffleList() ShuffleList()

We recommend providing rationale for why is used instead of , or replacing it with the latter.Recommendation: UnshuffleList() ShuffleList()
the issue is fixed in .Update: PR#6381

Adherence to Specification

1. In , the function , many parts of the specification for delay
consideration, rather than avoiding consideration. However, the function does not seem to ever delay - only returns (possibly with errors). Ensure that
the intent of the specification is preserved. fixed.

beacon-chain/blockchain/process_attestation.go onAttestation() on_attestatation()
onAttestation()

Update:

2. In , it may not be entirely clear why the seed impact on attestation verification is omitted from the
specification. fixed.
beacon-chain/blockchain/process_attestation_helpers.go#157

Update:

3. Typo in , “feature” -> “future”. fixed.beacon-chain/blockchain/process_block_helpers.go#45 Update:

4. Typo in , “couldn’t received” -> “couldn’t be received”. fixed.beacon-chain/blockchain/process_block_helpers.go#444 Update:

5. In , although the implementation of conforms to the specification, it is unclear whether
should represent per-epoch sums of slashed effective balances (i.e., balances before slashing) or only deltas (i.e., the actual slashed

balances). fixed.

beacon-chain/core/validators/validator.go SlashValidator()
BeaconState.slashings

Update:

6. In , we check if , which relates to the function in the spec pseudocode. Although it should
be semantically equivalent in practice, it may be best to strictly match the spec by changing the line to

. fixed.

beacon-chain/core/helpers/rewards_penalties.go#30 total == 0 max()
total <

params.BeaconConfig().EffectiveBalanceIncrement Update:

7. In , it is unclear how the domain of certain calls to are determined. For example, in
on L344 is used, whereas in on L371 is used.

fixed.

beacon-chain/core/helpers/committee.go Seed()
UpdateProposerIndicesInCache() DomainBeaconAttester precomputeProposerIndices() DomainBeaconProposer
Update:

8. In , according to specification

On L34, the encoder contains a function that can violate the spec (as
opposed to). The function seems to be used in tests only. We suggest moving it to testing scope only and removing it from the encoder.
fixed.

beacon-chain/p2p/encoder/ssz.go Encoding-dependent header: Req/Resp protocols using the ssz or ssz_snappy encoding strategies

MUST encode the length of the raw SSZ bytes, encoded as an unsigned protobuf varint. Encode()

EncodeWithLength() Update:

9. Specification pseudocode does not always exactly match the ETH2 specification, including, but not limited to the following examples:
1. In in the pseudocode on L116, is used instead of . fixed.beacon-chain/core/helpers/validators.go MIN_SEED_LOOKAHEAD MAX_SEED_LOOKAHEAD Update:

2. In in the pseudocode for , the function call
is used instead of . fixed.

beacon-chain/core/blocks/block_operations.go process_block_header
signing_root(state.latest_block_header) hash_tree_root(state.latest_block_header) Update:

3. In , in the pseudocode for , we have instead of
. fixed.

beacon-chain/core/helpers/committee.go get_beacon_committee index=epoch_offset, index=(slot %
SLOTS_PER_EPOCH) * committees_per_slot + index Update:

https://github.com/prysmaticlabs/prysm/pull/6404
https://github.com/prysmaticlabs/prysm/pull/5792
https://github.com/prysmaticlabs/prysm/pull/6390
https://github.com/prysmaticlabs/prysm/pull/6381

4. In in the pseudocode for , there are several missing snippets such as
. fixed.

beacon-chain/core/state/transition.go state_transition if validate_result: assert
verify_block_signature(state, signed_block) Update:

5. In , after L113, the is missing. There should be a line for .
fixed.

beacon-chain/core/validators/validator.go if-block whistleblower_index = proposer_index
Update:

6. The type is often used instead of .Hash Bytes32

7. In , it is unclear where the assertion
is enforced.
beacon-chain/core/block_operations.go#626 assert data.index < get_committee_count_at_slot(state, data.slot)

8. In , it seems the parameter noted in the is not used. On the other hand, the
variable is write-only in the specification. We recommend aligning the specification and code with each other, perhaps, mixing in into the root.
beacon-chain/core/block_operations.go#1038 depth spec pseudocode depth

depth

10. In , the comments before , , do not match
the specification. fixed.
beacon-chain/core/blocks/block_operations.go ProcessRandao() VerifyIndexedAttestation() ProcessDeposits()

Update:

11. In , the comment before does not match the specification for . fixed.beacon-chain/core/helpers/attestation.go SlotSignature() get_slot_signature() Update:

12. In , the comment before does not match the specification. fixed.beacon-chain/core/helpers/committee.go BeaconCommitteeFromState() Update:

13. Typo in , “MIN” -> “MAX”. fixed.beacon-chain/core/helpers/validators.go#116 Update:

Code Documentation

Generally, the code is lacking inline developer documentation. For instance, , do not contain any

documentation, while for other files (such as,) contain comments, however, do not describe the individual parameters and return values.

Furthermore:

beacon-chain/p2p/subnets.go beacon-chain/p2p/utils.go
beacon-chain/p2p/service.go

1. In , on L276 and L282, the error message "Could not create DB in dir %s" should say "clear" instead of "create". fixed.validator/node/node.go Update:

2. In , the description for appears to incorrectly reference itself: "The number of validators to deterministically
generate when used in combination with --interop-num-validators.". Likely a copy and paste error between L11 and 17. fixed.
validator/flags/interop.go InteropNumValidators

Update:

3. In , copy and paste error -- "could not compute previous epoch attestations merkleization" should be "… current
epoch …". fixed.
beacon-chain/state/stateutil/state_root.go#196

Update:

4. In , the comment in should say "underflow", not "overflow". fixed.beacon-chain/state/types.go#112 MinusRef() Update:

5. In , in the function , it is claimed that it . It does this only up to the length of
32. We recommend adjusting the comment. fixed.
beacon-chain/state/state_trie.go merkleize() pads the leaves to a power-of-two length

Update:

6. In , the comment is used in many places, but is likely only relevant to
. fixed.

beacon-chain/state/setters.go This PR updates the randao mixes

UpdateRandaoMixesAtIndex() Update:

7. In , unclear why "This PR…" is referenced in many of the comments. fixed.beacon-chain/state/setters.go Update:

8. In , L135-136 - one or more words are missing in the comments. fixed.beacon-chain/state/setters.go Update:

9. In , the specification pseudocode from could
be included for . fixed.
beacon-chain/core/epoch/precompute/justification_finalization.go process_justification_and_finalization

ProcessJustificationAndFinalizationPreCompute() Update:

10. In , the comment on L587-588
is not accurate. The attestations are appended to the 's list internal to the function, and the itself is

returned. fixed.

beacon-chain/core/block_operations.go This function returns a list of pending attestations which can then be appended to the

BeaconState's latest attestations. BeaconState BeaconState
Update:

11. Cache in is the only cache that doesn't use a mutex. We recommend documenting this design rationale. fixed.beacon-chain/cache/hot_state_cache.go Update:

12. Typos in , L383-384, “id’s” -> “ids” fixed.beacon-chain/p2p/service.go Update:

13. Typo in , "state to to validate". fixed.beacon-chain/blockchain/process_attestation.go#125 Update:

14. Typo in , "preformed" -> "performed". fixed.beacon-chain/blockchain/receive_block.go#63 Update:

15. Typo in , "form" should be "from". fixed.beacon-chain/core/helpers/slot_epoch.go#57 Update:

16. In , should the strings on L80 and L84 be reversed? fixed.beacon-chain/blockchain/metrics.go Help Update:

17. In , "head state" should be "head block". fixed.beacon-chain/blockchain/chain_info.go#146 Update:

18. In , not a correct English sentence. fixed.beacon-chain/blockchain/head.go#30 Update:

19. In , typo "inital-sync-cache-state" should be "initial-sync-cache-state". fixed.beacon-chain/blockchain/head.go#115 Update:

20. Typo in : "skip skips" -> "skip slots". fixed.beacon-chain/core/state/transition.go#244 Update:

21. In , L24-43, the functions implement little-endian format but specifications mention . fixed.shared/bytesutil/bytes.go big Update:

22. In , the function , returns elements of which are not in , not the other way around. fixed.shared/sliceutil/slice.go NotUint64() b a Update:

23. In , the function , doesn't return common elements, but all of them. fixed.shared/sliceutil/slice.go UnionByteSlices() Update:

24. In , in the spec pseudocode for , after L208 the pseudocode for the is missing:
. fixed.

beacon-chain/core/epoch/epoch_processing.go process_final_updates if-block
validator.effective_balance = min(balance - balance % EFFECTIVE_BALANCE_INCREMENT, MAX_EFFECTIVE_BALANCE) Update:

25. In , in function , stands for the remaining bytes in , but this is NOT the decoded message. Thus
the check on L163 and the comment on L164 do not match. The decoded message seems to be on L167 . fixed.
beacon-chain/p2p/encoder/ssz.go DecodeWithMaxLength() msgLen r

numOfBytes, err := r.Read(b) Update:

26. Typo in , “alswo” -> “also”. fixed.beacon-chain/core/helpers/slot_epoch.go Update:

27. Typo in , “compute_start_slot_of_epoch” -> “compute_start_slot_at_epoch”. fixed.beacon-chain/core/helpers/slot_epoch.go Update:

28. There are issues in end-user documentation:
1. All 3 links are broken in step 1 on this page fixed.https://docs.prylabs.network/docs/install/lin/activating-a-validator/ Update:

2. The link indicated in the following screenshots are broken on this page fixed.https://docs.prylabs.network/docs/install/lin/bazel/ Update:

29. In , document when a function should start & end a trace, and when traces are not required. This shall help other open-source contributors when adding new
functions to the system.
db/kv*

30. In , URLs mentioned in file are broken. fixed.beacon-chain/db/iface/interface.go Update:

31. In , L585-587, comment is misleading, as no list is being returned. Rather, the return will be a map with a single key-value pair: "block-beacon-chain/db/kv/blocks.go

https://github.com/prysmaticlabs/prysm/blob/7bea2373975e8c3714a8e943ff0dba83ca3b0a07/beacon-chain/core/blocks/block_operations.go#L931
https://docs.prylabs.network/docs/install/lin/activating-a-validator/
https://docs.prylabs.network/docs/install/lin/bazel/

parent-root-indices” -> parentRoot (array of bytes). Change the comment accordingly. fixed.Update:

32. In , in function header comment says it performs a binary search. However, if is one, the
implemented logic won’t skip half of the slots in the range. Fix the comment accordingly. fixed.
beacon-chain/db/kv/blocks.go fetchBlockRootsBySlotRange() step

Update:

33. Typo in , “Intialize” -> “Initialize”. fixed.beacon-chain/syncservice.go Update:

Adherence to Best Practices

1. In , duplicated code between , and . acknowledged.shared/bls/bls.go VerifyAggregate AggregateVerify FastAggregateVerify Update:

2. In , duplicated code between: fixed.beacon-chain/state/getters.go Update:

1. , , andStateRoots HistoricalRoots BlockRoots

2. andRandaoMixesLength BalancesLength

3. andPreviousEpochAttestations CurrentEpochAttestations

4. andCurrentJustifiedCheckpoint PreviousJustified

3. In , duplicated code between: fixed.beacon-chain/state/setters.go Update:

1. andSetCurrentJustifiedCheckpoint SetPreviousJustifiedCheckpoint

2. andAppendValidator AppendBalance

4. In , duplicated code between and . fixed.beacon-chain/cache/depositcache/pending_deposits.go pendingDeposits pendingContainers Update:

5. In , error messages on L182, 189, 192 should read “could not save”. fixed.beacon-chain/interop-cold-start/service.go Update:

6. In , field names in do not follow a consistent naming convention. fixed.beacon-chain/forkchoice/types.go type Node struct Update:

7. In , ignores error logging. Should it log it? fixed.beacon-chain/blockchain/metrics.go#122 Update:

8. In , in function , when there is an error, the function returns without closing . We recommend
closing it before returning. fixed.
beacon-chain/p2p/encoder/ssz.go writeSnappyBuffer() bufWriter

Update:

9. In , is used without validation. If the upstream code has an issue or becomes out-of-sync (e.g.,
attempts to send a topic that is no longer supported), the string could potentially be a topic that is actually not supported. fixed.
beacon-chain/p2p/beacon-chain/p2p/sender.go#20 baseTopic

baseTopic Update:

10. In , could be renamed to to better reflect the semantics. fixed.beacon-chain/p2p/peers/status.go#487 CurrentEpoch() HighestEpoch() Update:

11. In , could be renamed to for consistency with defined on . fixed.beacon-chain/p2p/peers/status.go#433 pidEpochs pidToEpoch rootToEpoch L432 Update:

12. There are multiple instances of in-line constants. We recommend moving these constants elsewhere: a separate constants file or the top of the current file, for better
visibility and maintainability. Some instances including, but not limited to: fixed.Update:

1. :beacon-chain/p2p/service.go#277 5*time.Second

2. :beacon-chain/p2p/service.go#281 10*time.Second

3. :beacon-chain/p2p/service.go#260 30 * time.Second

4. :beacon-chain/p2p/peers/watch_peers.go#29 30*time.Second

5. , , (the cache parameters , ,)beacon-chain/p2p/service.go L100-102 NumCounters MaxCost BufferItems

6. :beacon-chain/sync/rpc_status.go#169 50 * time.Millisecond

7. : .beacon-chain/sync/service.go#158 time.Second*10

13. Error messages should be more precise fixed.Update:

1. In beacon-chain/p2p/service.go
1. L214, the error message “Could not create peer” should be concretized to specify inability to connect to a peer defined by the relayer address

2. L226, the error message "Failed to start discovery" should be concretized to specify “discovery V5”

3. L232, the error message "Could not add bootnode to the exclusion list” should probably state “Could not connect to bootnodes”

4. L245, the error message “Could not connect to bootnode” should concretize that it is about Kademlia bootstrap

5. L255, the error message "Could not create peer" should be concretized to specify inability to connect to a peer defined by KademliaBootStrapAddr.

6. L250, the error should also be logged, like on L245, for instance, “Could not add Kademlia boot node to the exclusion list"

2. In , the error message "Invalid fork version from peer" is not precise because the error could also be due to an invalid
epoch as seen on .
beacon-chain/sync/rpc_status.go#152

L216

14. In , there is a 30-second timeout. However, in , and
, such a timeout is not present. We recommend to make the logic consistent. fixed.

beacon-chain/p2p/watch_peers.go beacon-chain/p2p/service.go#555 beacon-
chain/p2p/dial_relay_node.go#29 Update:

15. We recommend to resolving the TODOs for production readiness: fixed.Update:

1. In beacon-chain/p2p/watch_peers.go#159

2. In beacon-chain/sync/rpc_beacon_blocks_by_range.go#78

3. In beacon-chain/rpc/service.go#205

4. In beacon-chain/rpc/validator/proposer.go#391

5. In beacon-chain/sync/rpc_block_by_range#78

6. And others. can be used to obtain a complete list.git grep TODO

16. In , the method does not follow the same pattern for error propagation as other methods do: it fails with
errors while, for instance, the method returns an error in case of an issue, which seems to be more common in the P2P codebase. We

recommend improving consistency of error handling. fixed.

beacon-chain/p2p/discovery.go#33 createListener()
Fatal createLocalNode()

Update:

17. In , the following constant is defined in the :
. The same constant is being defined again in , . We advise against code clones. fixed.

gossip_topic_mappings.go GossipTopicMappings "/eth2/%x/committee_index%d_beacon_attestation":
&pb.Attestation{} broadcaster.go attestationSubnetTopicFormat Update:

18. The schema version of the libp2p protocol ID is currently hard-coded in the topic strings. To facilitate updating the version it would be beneficial to use a separate
state variable. fixed.SchemaVersion Update:

19. In since represents a public key, we recommend renaming it to . fixed.validator/client/runner.go#111 id pubKey Update:

20. In , as long as the epoch doesn't change, there is no need to call since already retrieves
it in the . fixed.
beacon-chain/core/helpers/validators.go#178 CurrentEpoch(state) L151

e Update:

21. In , inner and outer loops use variables named . Use different names for these variables. fixed.beacon-chain/state/stateutil/arrays.go#118 i Update:

22. In , function should add a check to ensure that . acknowledged.shared/sliceutil/slice.go SplitOffset() index * chunks < listSize Update:

23. In , the constants such as 16 on L112, which corresponds to in the ETH2 spec, should be refactored into
named constants. fixed.
beacon-chain/state/stateutil/blocks.go MAX_DEPOSITS

Update:

24. In , the constant 21 is used throughout which corresponds to the number of field indices. This should be a named constant.
fixed.

beacon-chain/state/state_trie.go
Update:

25. In , the function does not appear to be used anywhere or tested. acknowledged.beacon-chain/state/setters.go SetStateRoots() Update:

26. In , when updating reference counts, is used in many places, however is used in others. It is not clear
what distinguishes these cases, and likely could be used throughout. acknowledged.
beacon-chain/state/setters.go MinusRef() varname.refs--

MinusRef() Update:

27. In , the function could reuse . acknowledged.beacon-chain/state/getters.go ValidatorAtIndex() Cloners.CopyValidator() Update:

28. In , the constant does not appear to be used anywhere in the codebase.
acknowledged.
beacon-chain/core/feed/operation/events.go#17 AggregatedAttReceived Update:

29. In , the statement: , is unnecessary since the nested -loop would not loop if
. acknowledged.

beacon-chain/core/block_operations.go#818 if len(indices) > 0 for len(indices)
== 0 Update:

30. In , the deprecated function , which relies upon the function
(which is also deprecated), is still used in . acknowledged.
beacon-chain/core/block_operations.go verifyDepositDataSigningRoot() ssz.SigningRoot()

ProcessDeposit() Update:

31. In , the switch statement has breaks in case branches. Those are not needed in Go. fixed.beacon-chain/main.go#115 Update:

32. In , the switch statement has breaks in case branches. Those are not needed in Go. fixed.validator/main.go#152 Update:

33. In , does not use the context parameter. It should be removed. acknowledged.beacon-chain/sync/subscriber.go#36 noopValidator() Update:

34. In , uses deprecated . The code should be updated. fixed.beacon-chain/sync/subscriber.go#135 PubSub.Subscribe() Update:

35. In , the function for selecting a failover peer is inefficient. It does not have to filter out the wrong peer at
the beginning by searching for it. It can right away randomly select a new peer. If it happens to find the same peer (the forbidden one), it knows where it is and can drop
it. fixed.

beacon-chain/sync/initial-sync/block_fetcher.go#405

Update:

36. In , the name is reused (previously used as a name of of the argument). We recommend using
different names. fixed.
beacon-chain/sync/initial-sync/block_fetcher.go#269 count

Update:

37. In , there is a switch statement with an empty label. Some logging/comment would be handy.
fixed.

beacon-chain/sync/initial-sync/blocks_queue.go#310 default
Update:

38. In , L160 and 163 should be swapped. The length error is known on L160, and the reader is not needed if the error happens.
fixed.
beacon-chain/p2p/encoder/ssz.go Update:

39. In (and implementations), and are not used outside tests. They are declared in the interface,
and supported by the database in (as well as kafka), but not used otherwise. They should be moved to the test scope only. acknowledged.
beacon-chain/db/iface/interface.go DeleteBlock() DeleteBlocks()

blocks.go Update:

40. In , the functions and have a lot of duplicated code related to retrieving the exit. Reuse
in and return whether it is not . fixed.

beacon-chain/db/kv/operations.go HasVoluntaryExit() VoluntaryExit()
VoluntaryExit() HasVoluntaryExit() nil Update:

41. In , it seems that none of the methods here is called externally. Are they part of the future phase? At the very least,
is only called in tests. Consider moving it to the test scope. acknowledged.

beacon-chain/db/kv/operations.go
DeleteVoluntaryExit() Update:

42. In , the function has a lot of duplicated code with . Reuse the result in
. Same holds for and . fixed.

beacon-chain/db/kv/slashings.go ProposerSlashing() HasProposerSlashing()
HasProposerSlashing() AttesterSlashing() HasAttesterSlashing() Update:

43. In , methods seem to have a testing scope only. Unless they are part of an upcoming phase,
consider moving those to the testing scope. acknowledged.
beacon-chain/db/kv/slashings.go Delete[Attester]Slashing()

Update:

44. In and , the functions and duplicate the code similarly to
and . fixed.

beacon-chain/db/kv/state_summary.go beacon-chain/db/kv/state.go State() HasState()
StateSumary() HasStateSummary() Update:

45. In package , the code suffers from the same unused code issue as the beacon chain database (the methods). This is present in
of , in . fixed.

validator/db Delete()
DeleteAttestationHistory() attestation_history.go DeleteProposalHistory() proposal_history.go Update:

46. In package , there is some code duplicated in methods in both and packages. Consider removing the
duplicates and consolidate the filesystem code. acknowledged.

validator/db NewKVStore() validator/db beacon_chain/db
Update:

47. Inline constants are used instead of existing named constants. fixed.Update:

1. should be used in:TTFB_TIMEOUT
1. beacon-chain/p2p/service.go#277

2. beacon-chain/sync/rpc_beacon_blocks_by_root.go#55

3. beacon-chain/sync/rpc_goodbye.go#32

4. beacon-chain/sync/rpc_metadata.go#21

5. beacon-chain/sync/rpc_ping.go#21

6. beacon-chain/sync/rpc_status.go#142

2. should be used in:RESP_TIMEOUT
1. beacon-chain/p2p/service.go#281

2. beacon-chain/sync/rpc_beacon_blocks_by_range.go#25

3. beacon-chain/sync/rpc_beacon_blocks_by_root.go#18

4. beacon-chain/sync/rpc_chunked_response.go#44

5. beacon-chain/sync/rpc_goodbye.go#47

6. beacon-chain/sync/rpc_metadata.go#33

7. beacon-chain/sync/rpc_ping.go#53

8. beacon-chain/sync/rpc_status.go#73

48. Many DB-related functions that perform a computation on a given entity also have a corresponding function to perform the same computation on a corresponding
batch of elements of the same entity kind. Examples: / , / , ,
etc. Such pairs of singular/plural functions share a lot of common code that could be simplified. Since the plural form is the most generic computation, it suffices to
rewrite the singular function as a call to the plural one giving it a batch of size one. fixed.

SaveBlock() SaveBlocks() DeleteBlock() DeleteBlocks() SaveStateSummary()/SaveStateSummaries()

Update:

49. In , L21-44: use instead of enumerating sequential values. fixed.beacon-chain/db/filters/filter.go iota Update:

50. In , declaring as an alias to seems excessive; rather, would have sufficed. fixed.beacon-chain/db/filters/filter.go FilterType int uint8 Update:

51. In , prior to returning, issue a log info just to inform that the db was not wrapped. fixed.beacon-chain/db/kafka/export_wrapper.go#36 Update:

52. In , is being called, but no side effect occurs. Replace it with . fixed.beacon-chain/db/kv/archived_point.go#38 Update View Update:

53. In , function does not start & end a span. Following other functions, start & end a
span. fixed.
beacon-chain/db/kv/attestations.go createAttestationIndicesFromData()

Update:

54. In , the permissions of the backup directory path (0777) are less strict than the database folder (0700). Make it the same - 0700.
fixed.

beacon-chain/db/kv/backup.go#32
Update:

55. In , the permissions of the backup db file (0666) are less strict than the target database (0600). Make it the same - 0600.
fixed.
beacon-chain/db/kv/backup.go#38 Update:

56. In : give a timeout option. fixed.beacon-chain/db/kv/backup.go#38 Open Update:

57. In , receiver name () does not match receiver name in other files (). Change all receiver names under to the same name.
fixed.

beacon-chain/db/kv/backup.go kv k db/*
Update:

58. In , does not start & end an span. Following other functions in , start & end a span. fixed.beacon-chain/db/kv/backup.go Backup kv/* Update:

59. In , L527, L531, Rename to for better expressiveness. fixed.beacon-chain/db/kv/blocks.go k key Update:

60. In , functions , , and do not
start & end a span. Following other operations, start & end a span. fixed.
beacon-chain/db/kv/blocks.go fetchBlockRootsBySlotRange() createBlockIndicesFromBlock() createBlockIndicesFromFilters()

Update:

61. In , the function does not start & end a . Following other operations, start & end
a span. fixed.
beacon-chain/db/kv/check_historical_state.go HistoricalStatesDeleted() Span

Update:

62. In , and functions do not start & end a span. Following other functions in , start & end a span.
acknowledged.
beacon-chain/db/kv/encoding.go encode decode kv/* Update:

63. In , functions in do not start & end a span. Following other operations in kv/*, start & end a span. acknowledged.beacon-chain/db/kv/kv.go kv.go Update:

64. In , functions and do not start a trace. Following other
functions in , start & end a span. fixed.
beacon-chain/db/kv/regen_historical_states.go lastSavedBlockArchivedIndex() saveArchivedInfo()

kv/* Update:

65. In , no function in start & end a span. Following other functions in , start & end a span. fixed.beacon-chain/db/kv/utils.go utils.go kv/* Update:

66. In , does not start & end a trace. Following other operations, start & end a span.
fixed.
validator/db/attestation_history.go unmarshalAttestationHistory() Update:

67. In , rename receiver name for better reading. Suggestion: instead of , which causes to appear in some places, rename it to .
fixed.

validator/db/db.go db db.db store
Update:

68. In , as this code is essentially testing infra, put it in a dedicated testing folder (the same way as performed for the file in the
beacon-chain db). acknowledged.
validator/db/setup_db.go setup_db.go

Update:

69. In , across many files, receiver is named . Suggestion: name as . fixed.Beacon-chain::Sync Service r r *Service service *Service Update:

70. In , rename receiver to make it more expressive. Suggestion: name as . fixed.beacon-chain/sync/service.go r *Service service *Service Update:

71. In , lock/unlock in is not required, as the internal function execution never overlaps
with itself. fixed.
beacon-chain/sync/pending_blocks_queue.go processPendingBlocksQueue()

Update:

72. In , lock/unlock in is not required, as the internal function execution never
overlaps with itself. fixed.
beacon-chain/sync/pending_attestations_queue.go processPendingAttsQueue()

Update:

73. In , error message is incorrect, as it misses negation. Should be "could not save genesis block root". fixed.beacon-chain/blockchain/service.go#349 Update:

Test Results

Test Suite Results

Multiple code pieces lack corresponding unit tests, for example:

1. In , the function is missing a test in the package.beacon-chain/db/kv/checkpoint_historical_state HistoricalStatesDeleted() kv

2. The code in:
1. beacon-chain/db/kv/check_historical_state.go

2. beacon-chain/db/kv/powchain.go

3. validator/db/db.go

4. beacon-chain/sync/decode_pubsub.go

5. beacon-chain/db/kv/powchain.go

6. beacon-chain/db/kv/regen_historical_states.go

7. validator/db/db.go

8. .beacon-chain/db/kv/state.go

Lack of tests always add risks to a project. We highly recommend adding unit tests.

Code Coverage

Test coverage analysis is available on: https://codecov.io/gh/prysmaticlabs/prysm/tree/7bea2373975e8c3714a8e943ff0dba83ca3b0a07

Overall, the code coverage is relatively low. We highly recommend improving the code coverage.

Changelog

2020-06-19 - Initial report•

2020-10-13 - Final report based on• PR#6327

https://codecov.io/gh/prysmaticlabs/prysm/tree/7bea2373975e8c3714a8e943ff0dba83ca3b0a07
https://github.com/prysmaticlabs/prysm/issues/6327

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Prysm Audit

